
Chapter 4

[107]

The above CustomerCollection class is derived from Collection<Customer>
because we don't want to derive it from List<> for the reasons mentioned earlier.
Now we are passing a List<> in the default constructor because we might need to
call some useful methods in List<T> and that's why we are encapsulating List<T>
like this, deriving our Collection<T> using the base constructor so that the
Customer Collection can simply call the underlying List<T>'s find (or any other
useful method) implementation, saving us from having to implement our own.

Summary
We have seen how a 5-tier architecture works. An important point to note is that
there can be multiple ways of implementing a 5-tier architecture, and no architectural
implementation can be a silver bullet for your own custom project. The aim of this
chapter is to give you an idea of and an approach to how a 5-tier design can be
implemented in your own projects. But this is by no means the only best method to
do so. Many experienced developers implement their own custom n-tier solutions,
which can be very different from what we have seen in this chapter. But the basic
concepts from an architectural standpoint would be similar to what we have learnt in
this chapter, giving us the knowledge to customize our own implementation for our
specific project needs.

We also covered some crucial architectural aspects and design patterns, such as loose
coupling, a lack of strong dependency on other layers, scalability, and so on. An
n-tier implementation involves more work and longer code files, but this is a small
price to pay for greater benefits such as scalability, maintainability and flexibility,
which are important for big projects.

It's important to understand that we should not blindly use an n-tier architecture
in every project. We need to think about and foresee a need for such distributed
architecture and then plan accordingly. Using a 5-tier architecture for a simple
guestbook application for a personal website would be overkill, in addition to
wasting time and resources. But it is a must for a large-scale inventory management
system that needs to interact with other external systems such as accounting
packages. With proper use, n-tier architecture can help organizations scale up
without re-writing the entire application, and can save valuable man hours of work
in the long run, as well as provide a stable and robust application platform for
future growth.

